Closing today: \quad HW_1A,1B,1C
Closing next wed: HW_2A,2B,2C Office Hours: 1:30-3:00pm in Smith 309

Quick review:

Def' n : The "signed" area between $f(x)$ and the x-axis from $x=a$ to $x=b$ is the definite integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$
FTOC(1): Areas are antiderivatives!

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

FTOC(2): If $\mathrm{F}(\mathrm{x})$ is any antideriv. of $f(x)$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Entry Task: Evaluate 4 $\int_{0}^{4} e^{x}+\sqrt{x^{3}} d x$
$\int_{3}^{6} \frac{4}{x}-\frac{2}{x^{2}} d x$

5.4 The Indefinite Integral and
 Net/Total Change

Def' n : The indefinite integral of $f(x)$ is defined to be the general antiderivative of $f(x)$. And we write

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antiderivative of $f(x)$.

Net Change and Total Change

Assume an object is moving along a straight line (up/down or left/right). Let
$s(t)=$ 'location at time t^{\prime}
$v(t)=$ 'velocity at time t^{\prime}
pos. $v(t)$ means moving up/right neg. $v(t)$ means moving down/left
The FTOC (part 2) says

$$
\int_{a}^{b} v(t) d t=s(b)-s(a)
$$

i.e.
'integral of velocity'= 'net change in dist'
We also call this the displacement.

In general, the $\operatorname{FTOC}(2)$ says the net change in $f(x)$ from $x=a$ to $x=b$ is the integral of its rates.
That is:

$$
\int_{a}^{b} f^{\prime}(t) d t=f(b)-f(a)
$$

We define total change in dist. by

$$
\int_{a}^{b}|v(t)| d t
$$

which we compute by

1. Solving $v(t)=0$ for t.
2. Splitting up the integral at these t values, dropping the absolute value and integrating separately.
3. Adding together as positive numbers.

5.5 Substitution - Motivation:

1. Find the following derivatives
Function Derivative?
$\cos \left(x^{2}\right)$
$\sin \left(x^{4}\right)$
$\mathrm{e}^{\tan (x)}$
$(\ln (x))^{3}$
$\ln \left(x^{4}+1\right)$
2. Rewrite each as integrals:

$$
\begin{gathered}
d x=\cos \left(x^{2}\right)+C \\
d x=\sin \left(x^{4}\right)+C \\
d x=\mathrm{e}^{\tan (x)}+C \\
d x=(\ln (\mathrm{x}))^{3}+C \\
d x=\ln \left(\mathrm{x}^{4}+1\right)+C
\end{gathered}
$$

3. Guess and check the answer to: $\int 7 x^{6} \sin \left(x^{7}\right) d x=$

Observations:

1. We are reversing the "chain rule".
2. In each case, we see
"inside" = function inside another
"outside" = derivative of inside

To help us mechanically see these connections, we use what we call:

The Substitution Rule:

If we write $u=g(x)$ and $d u=g^{\prime}(x) d x$, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

